Practical Considerations for Using Value Added Models for Monitoring Teacher Effectiveness

Pete Goldschmidt, Ph.D.

Value Added Modeling Meeting
Sacramento, CA, October, 2008

Introduction

Moving from status to growth and Value Added

Considerations regarding
Status to growth
Measurement issues
Data issues
modeling issues

Practical implications

Status Accountability Model – based on unconditional mean performance

Irrespective of everything else going on – how is this teacher performing right now?

Assumes that:

- All student success is attributable to the current school (in the current year).
- By extension all student success is attributable to current teacher.
 - Also assumes that students do not bring any "human capital" inputs with them to the school.
 - There are no selection effects the students in this school/class are like any other students in any other school/class in the district/state. One could bring in any other students from any other school and they would perform equally well.
 - There are no compositional effects.

Moving Beyond Status

Considerations

- Begin with questions:
 - ✓ What do we consider a "good" teacher to look like?
 - ✓ Is there an appropriate assessment system in place?
 - ✓ What additional data requirements are there?
 - ✓ Is there capacity to utilize various model choices?

Value Added Basics

- The underlying assumption for value added models is:
 - \checkmark Ait = f(Bit, Pit, Sit, Iit, Eit), (1)

where for student i at time t Achievement A, is some function of:

- ✓ Student background (B)
- ✓ Peer and other influences (P)
- ✓ School inputs (S)
- ✓ Innate ability (I)
- ✓ And luck (E).
- Model is cumulative and past inputs may affect current Achievement.
- Also would need independent measure of innate ability, gathered before any S has occurred.
- These are tremendous data requirements, and generally infeasible.

Value Added Basics

If we assume that (1) holds for any time t, then we can consider change in achievement from t to t`.

 Then by simply adding Ait to both sides, we get a familiar model:

$$\checkmark$$
 Ait = f(Bit -t, Pit -t, Sit -t, Iit, Ait, Eit) (2)

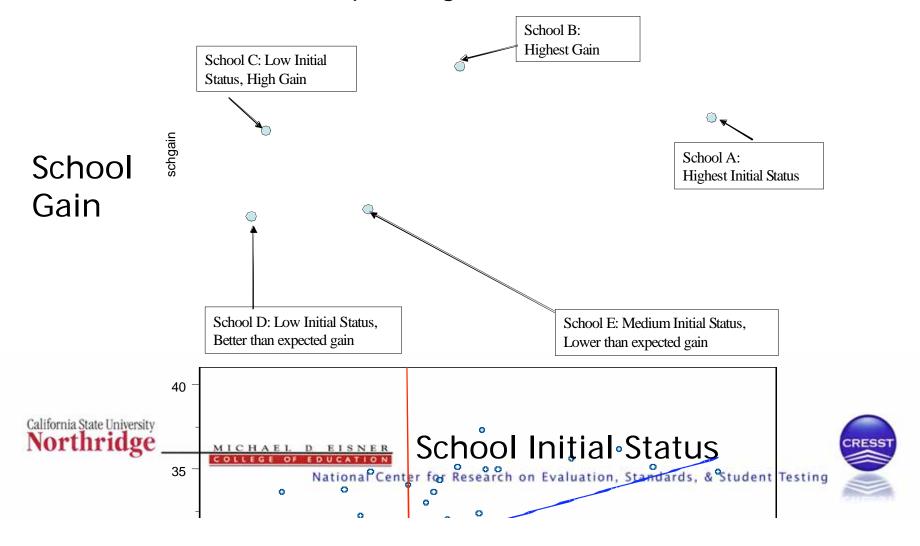
 Still lack measure of I, and omitting variables will increase the effect of included variables if there is a correlation between the omitted variable and the included variables.

However:

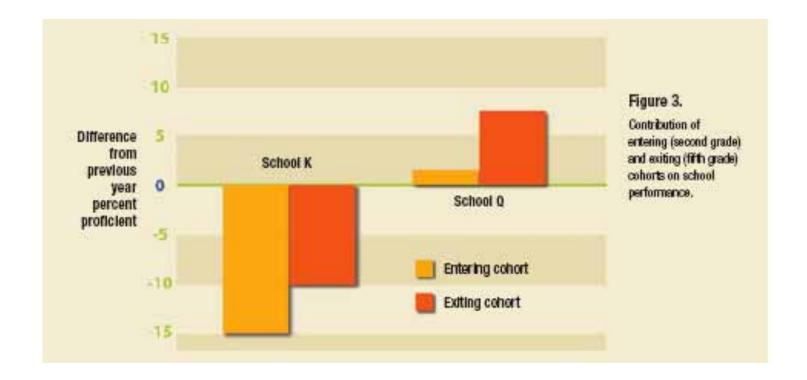
- ✓ Once student B is included in the model the effect of omitting I is small; and, effect lessoned because include Ait.
- ✓ Also, remaining variables measured contemporaneously, but this is generally not too problematic since only going back from t`to t.

Value Added example (schools)

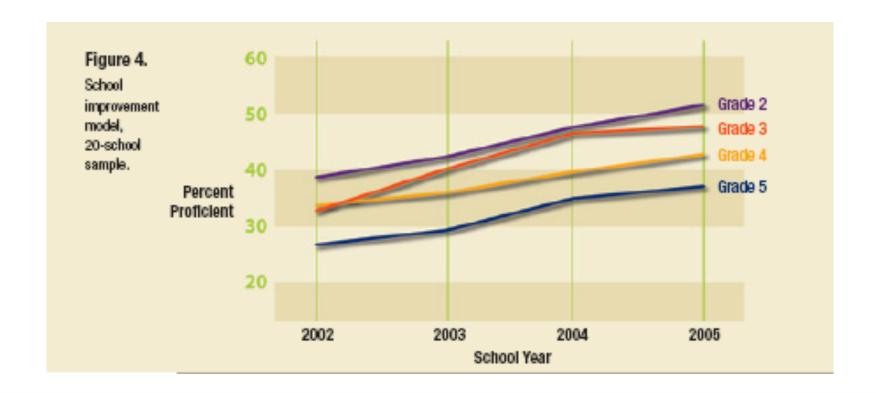
 Based on LGPM but incorporates measurement error and uses latent initial status to predict growth.



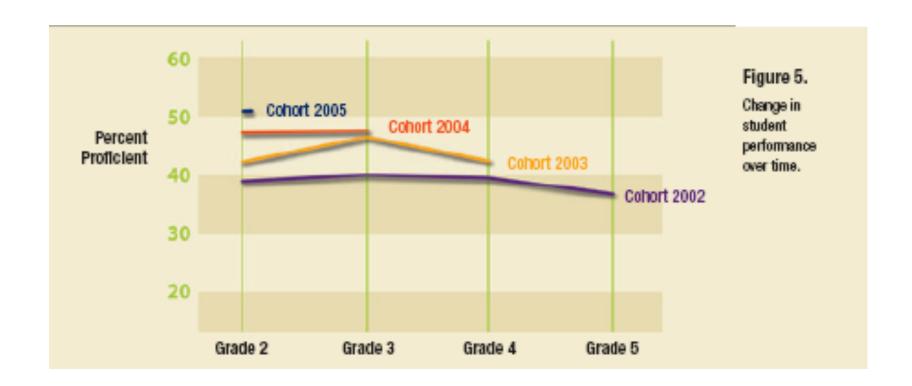
Potential effects of change



Growth as a basis for Value Added I



Growth as a basis for Value Added II



Comparing LPGM and LSPM

- Considering both types of growth
- Correlation between school ranks based on two approaches ranges from 0.25 to 0.65.
- A majority of the variation in individual student growth is within schools (as much as 90%).
- Important to consider whether individual growth affected by cohort student is in.

Longitudinal Cohort Panel Growth Model

$$\begin{aligned} & \operatorname{math}_{ijkl} \sim \operatorname{N}(XB, \ \Omega) \\ & \operatorname{math}_{ijkl} = \beta_{0ijkl} \operatorname{intercept} + \beta_1 \operatorname{grade2}_{ijkl} + \beta_2 \operatorname{cyear}_{kl} \\ & \beta_{0ijkl} = \beta_0 + f_{0l} + v_{0kl} + u_{0jkl} + e_{0ijkl} \\ & \left[f_{0l} \right] \sim \operatorname{N}(0, \ \Omega_f) : \ \Omega_f = \left[\sigma_{f0}^2 \right] \\ & \left[v_{0kl} \right] \sim \operatorname{N}(0, \ \Omega_v) : \ \Omega_v = \left[\sigma_{v0}^2 \right] \\ & \left[u_{0jkl} \right] \sim \operatorname{N}(0, \ \Omega_u) : \ \Omega_u = \left[\sigma_{u0}^2 \right] \\ & \left[e_{0ijkl} \right] \sim \operatorname{N}(0, \ \Omega_e) : \ \Omega_e = \left[\sigma_{e0}^2 \right] \end{aligned}$$

 where math_{ijkl} is the math score at time i, for student j in cohort k, in school l.

Random effects	Variability Breakdown
Level 1	
error	
Level 2	
Between students within cohorts, sch ool	ls
Initial Status	84.9%
Individual growth	42.7%
Level 3	
Between cohorts, within schools	
Initial Status	6.7%
Individual growth	42.2%
Cohort growth	45.2%
Level 4	
Between schools	
Initial Status	8.4%
Individual growth	15.1%
Cohort growth	54.8%
Northridge MICHAEL D. ELSNER	

COLLEGE OF EDUCATION

Measurement Issues

Using growth for monitoring performance is preferable to static indicators of performance.

- Important to link assessments to their uses:
 - ✓ Need to consider assessments
 - ✓ Need to consider standards
 - ✓ Need to consider what growth is measuring and how it is represented
 - ✓ Need to consider score representation
 - i.e., metrics and valid inferences from growth model results

Assessments as Indicators of Student Academic Performance

- In terms of schools or teachers, we are interested in:
 - Achievement tests as they are intended to measure knowledge and skills.

As opposed to:

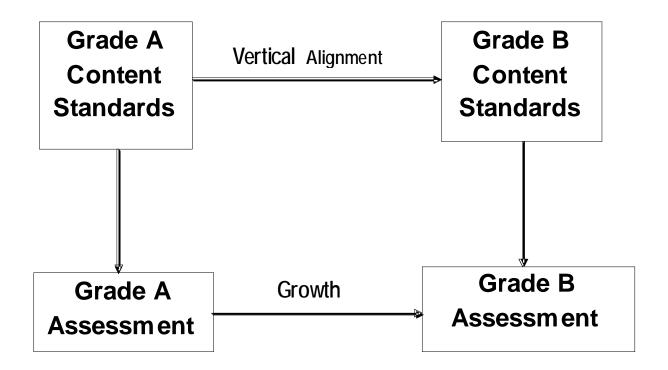
 Aptitude tests that are generally used to predict future performance.

Aspects Affecting Individual Assessments and Assessments Across Time

For all assessments, surveys, or instruments, need to consider measurement issues related to:

- Validity Issues
- Validity Over Time (alignment issues)
- Precision
- Reliability

Growth Must be Based on Vertically Aligned Content Standards



Vertical Alignment

Issues

- How are content standards/objectives related from one grade to the next?
- Knowledge or skills extended to wider range of content
- Deeper understanding (cognitive processes) for the same content
- New or different content and/or skills
- Need to consider the nature of alignment
 - ✓ Depth of knowledge
 - ✓ Range of Content, etc.
- Need to consider the quality of alignment.

Northridge

Are content standards clearly articulated across grades?

MICHAEL D. EISNER

Precision, Reliability, and Growth

Reliability

- ✓ Describes how much of the between-person variability in observed scores is attributable to variability in true scores.
- ✓ Better reliability in rates of change estimates creates a better ability to detect true differences in trajectories among individuals (or groups).
- ✓ Better precision generally leads to higher reliability.
- ✓ If there is little variation in true growth, then despite good precision reliability will be low (making it difficult to detect between person differences in growth).

Reliability and Growth

- Gain scores are not inherently unreliable.
 - ✓ Gain scores also benefit from not normalizing performance as residual gains from covariance adjustment models do.

Test Metrics - Uses and Misuses

Issues

- ✓ The appropriateness of the metric depends upon the uses of the results
- ✓ Generally, scale scores are best for analyses although more difficult to interpret
- ✓ NCEs are easily interpretable and can readily be used in accountability models
- ✓ Proficiency categories result in a loss of information due grouping data into categories
 - No information regarding within category changes in performance

Data Issues

- Value Added requires individual student data
- Linked over time
- Linked to each teacher

Modeling: Value Added and Teacher Effects

- TVASS explicitly attempts to model teacher effects
 - ✓ Assumes linear and additive teacher effects
- Rand Model extension and generalization of TVASS
- In general models attempting to model specific teacher effects require:
 - ✓ A substantial amount of data
 - Extensive computing capacity,
 - ✓ And if modeling entire system only (approx) 5% of teacher "statistically" differ from average effectiveness
- Other models base teacher effects on school effectiveness (e.g., NC)

Modeling Issues

- TVASS uses five years of teacher data
 - ✓ Median time in profession in CA?
 - ✓ Student school changes
 - ✓ Teacher school changes
- How treat teacher effects?
 - ✓ Cumulative
 - ✓ Additive
 - ✓ Decaying
 - Two year effect

Conclusions

- Valued Added better way to examine teacher effects than status
- Need to consider assessments underlying analyses
- Intensive data requirements
- Value Added models can be quite complex

Conclusions

- A single number summary of teacher, school, or student performance is less desirable than multiple indicators.
- Studies indicate that both sanctions and rewards tend to produce similar stresses on teachers
- Could use school results to monitor teachers as a group, but significant within school variability in student performance (at least as much, if not more, than between schools.

Contact

Pete Goldschmidt, Ph.D.

Pete.Goldschmidt@CSUN.edu

(818) 677-4601

